Telegram Group & Telegram Channel
🧩 Задача для дата-сайентистов: "Средняя зарплата" (с подвохом)

📖 Описание задачи

У вас есть DataFrame df с данными о зарплатах сотрудников компании:


import pandas as pd

data = {
'employee_id': [1, 2, 3, 4, 5, 6],
'department': ['IT', 'IT', 'HR', 'HR', 'Finance', 'Finance'],
'salary': [100000, None, 50000, None, 70000, None]
}

df = pd.DataFrame(data)
print(df)


Результат:


employee_id department salary
0 1 IT 100000.0
1 2 IT NaN
2 3 HR 50000.0
3 4 HR NaN
4 5 Finance 70000.0
5 6 Finance NaN


В задаче требуется заполнить пропущенные значения зарплат в каждом отделе медианой зарплаты этого отдела.
Если медиана не может быть рассчитана (например, все значения NaN) — оставить NaN.

Вы пишете следующий код:


df['salary_filled'] = df.groupby('department')['salary'].transform(lambda x: x.fillna(x.median()))


Код выполняется без ошибок, но когда вы проверяете результат:


print(df)


Получаете:


employee_id department salary salary_filled
0 1 IT 100000.0 100000.0
1 2 IT NaN 100000.0
2 3 HR 50000.0 50000.0
3 4 HR NaN 50000.0
4 5 Finance 70000.0 70000.0
5 6 Finance NaN 70000.0


Всё вроде бы верно…

Но через неделю приходит заказчик и говорит:

> «Ты заполнил пропуски, но потом выяснилось, что в реальных данных в одном отделе все зарплаты NaN, а значит медиана не существует.
> А в твоём коде при такой ситуации почему-то появляется 0 вместо NaN!»

📝 Вопросы:

1. Почему появилось 0 (хотя ожидалось NaN)?
2. Как переписать код так, чтобы:
- Если медиана существует → заполнить ею NaN
- Если медиана не существует (все значения NaN) → оставить NaN

---

🎯 Что проверяет задача:

Понимание, как median() работает на пустой серии
Понимание, что fillna(np.nan) может привести к замещению на 0 при приведении типов
Умение работать с группами, где нет данных

---

💡 Подсказка:

Если `x.median()` вернёт `nan`, то `x.fillna(nan)` оставит NaN внутри группы, **но transform может "автоматически" заменить NaN на 0 при сборке результата** (особенность Pandas).

Нужно явно управлять значением медианы, чтобы избежать непредвиденного замещения.

---

Ожидаемое правильное решение:

```python
def fill_with_median_or_nan(x):
med = x.median()
return x.fillna(med if pd.notna(med) else np.nan)

df['salary_filled'] = df.groupby('department')['salary'].transform(fill_with_median_or_nan)
```

Теперь в отделах, где медиана не существует, **NaN останется NaN**, а не превратится в 0.


🔥 Дополнительный подвох (для усложнения):

Что будет, если отдел состоит только из одного сотрудника с NaN?
→ Нужно ли обработать случай, где в отделе всего 1 запись и она NaN?


📝 Вывод:

Эта задача проверяет:

Понимание нюансов заполнения пропусков в Pandas
Внимательность к corner-case ситуациям
Умение работать с группами с частично или полностью отсутствующими данными

🔥 Отличная тренировка внимательности и глубины понимания Pandas!



tg-me.com/machinelearning_interview/1785
Create:
Last Update:

🧩 Задача для дата-сайентистов: "Средняя зарплата" (с подвохом)

📖 Описание задачи

У вас есть DataFrame df с данными о зарплатах сотрудников компании:


import pandas as pd

data = {
'employee_id': [1, 2, 3, 4, 5, 6],
'department': ['IT', 'IT', 'HR', 'HR', 'Finance', 'Finance'],
'salary': [100000, None, 50000, None, 70000, None]
}

df = pd.DataFrame(data)
print(df)


Результат:


employee_id department salary
0 1 IT 100000.0
1 2 IT NaN
2 3 HR 50000.0
3 4 HR NaN
4 5 Finance 70000.0
5 6 Finance NaN


В задаче требуется заполнить пропущенные значения зарплат в каждом отделе медианой зарплаты этого отдела.
Если медиана не может быть рассчитана (например, все значения NaN) — оставить NaN.

Вы пишете следующий код:


df['salary_filled'] = df.groupby('department')['salary'].transform(lambda x: x.fillna(x.median()))


Код выполняется без ошибок, но когда вы проверяете результат:


print(df)


Получаете:


employee_id department salary salary_filled
0 1 IT 100000.0 100000.0
1 2 IT NaN 100000.0
2 3 HR 50000.0 50000.0
3 4 HR NaN 50000.0
4 5 Finance 70000.0 70000.0
5 6 Finance NaN 70000.0


Всё вроде бы верно…

Но через неделю приходит заказчик и говорит:

> «Ты заполнил пропуски, но потом выяснилось, что в реальных данных в одном отделе все зарплаты NaN, а значит медиана не существует.
> А в твоём коде при такой ситуации почему-то появляется 0 вместо NaN!»

📝 Вопросы:

1. Почему появилось 0 (хотя ожидалось NaN)?
2. Как переписать код так, чтобы:
- Если медиана существует → заполнить ею NaN
- Если медиана не существует (все значения NaN) → оставить NaN

---

🎯 Что проверяет задача:

Понимание, как median() работает на пустой серии
Понимание, что fillna(np.nan) может привести к замещению на 0 при приведении типов
Умение работать с группами, где нет данных

---

💡 Подсказка:

Если `x.median()` вернёт `nan`, то `x.fillna(nan)` оставит NaN внутри группы, **но transform может "автоматически" заменить NaN на 0 при сборке результата** (особенность Pandas).

Нужно явно управлять значением медианы, чтобы избежать непредвиденного замещения.

---

Ожидаемое правильное решение:

```python
def fill_with_median_or_nan(x):
med = x.median()
return x.fillna(med if pd.notna(med) else np.nan)

df['salary_filled'] = df.groupby('department')['salary'].transform(fill_with_median_or_nan)
```

Теперь в отделах, где медиана не существует, **NaN останется NaN**, а не превратится в 0.


🔥 Дополнительный подвох (для усложнения):

Что будет, если отдел состоит только из одного сотрудника с NaN?
→ Нужно ли обработать случай, где в отделе всего 1 запись и она NaN?


📝 Вывод:

Эта задача проверяет:

Понимание нюансов заполнения пропусков в Pandas
Внимательность к corner-case ситуациям
Умение работать с группами с частично или полностью отсутствующими данными

🔥 Отличная тренировка внимательности и глубины понимания Pandas!

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/machinelearning_interview/1785

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Machine learning Interview from jp


Telegram Machine learning Interview
FROM USA